Chi tiết bài giảng luỹ thừa lớp 12
Bài giảng luỹ thừa lớp 12 là công cụ cần thiết giúp các em học sinh THPT đang ôn tập có thể tiệm cận đến việc làm chủ kiến thức về luỹ thừa. Bài viết sau đây chính là bài giảng luỹ thừa lớp 12 gồm toàn bộ lý thuyết về luỹ thừa và các dạng bài luỹ thừa thường gặp nhất trong các đề thi.
Trước khi bắt đầu bài giảng luỹ thừa lớp 12, các em học sinh hãy đọc kỹ bảng sau để có cái nhìn toàn diện về nhận định luỹ thừa trong đề thi THPT QG dự kiến nhé:
Để tiện hơn trong việc theo dõi bài giảng luỹ thừa lớp 12 sau đây, các em đừng quên tải về file tổng hợp lý thuyết về luỹ thừa do các thầy cô trường VUIHOC biên soạn nhé!
Tải xuống file tổng hợp lý thuyết bài giảng luỹ thừa lớp 12
1. Tổng quan về lý thuyết luỹ thừa
1.1. Định nghĩa
Khởi động bài giảng luỹ thừa lớp 12, VUIHOC sẽ ôn tập lại định nghĩa luỹ thừa cùng các em. Các em có thể hiểu đơn giản rằng, lũy thừa là một phép toán hai ngôi của toán học thực hiện trên hai số a và b, kết quả của phép toán lũy thừa là tích số của phép nhân có n thừa số a nhân với nhau.
1.2. Tính chất
Các tính chất của luỹ thừa có liên quan rất nhiều đến lý thuyết hàm số lũy thừa. Chúng ta cùng xét các tính chất lũy thừa sau:
Tính chất về đẳng thức: Cho a ≠ 0; b ≠ 0; m, n ∈ , ta có:
Tính chất về bất đẳng thức:
- So sánh cùng cơ số: Cho m, n ∈ . Khi đó:
- Với $a>1$ thì $a^m>a^n\Rightarrow m>n$
- Với $0<a<1$ thì $a^m>a^n\Rightarrow m<n$
-
So sánh cùng số mũ:
- Với số mũ dương $n>0$: $a>b>0\Rightarrow a^n>b^n$
- Với số mũ âm $n<0$: $a>b>0\Rightarrow a^n<b^n$
1.3. Tổng hợp các công thức trong bài giảng luỹ thừa lớp 12
Về cơ bản, các em cần nắm vững những công thức luỹ thừa căn bản trong bảng sau:
Ngoài ra, luỹ thừa còn có một số công thức khác trong các trường hợp đặc biệt, cụ thể như sau:
-
Luỹ thừa của số $e$:
Số $e$ là hằng số toán học quan trọng, xấp xỉ 2.718 và là cơ số của logarit tự nhiên. Số e được định nghĩa qua giới hạn sau:
$e=\lim_{x\rightarrow \infty }(1+\frac{1}{n})^n$
Hàm $e$ mũ, được định nghĩa bởi $e=\lim_{x\rightarrow \infty }(1+\frac{1}{n})^n$ ở đây x được viết như số mũ vì nó thỏa mãn đẳng thức cơ bản của lũy thừa $e^{x+y}=e^x.e^y$
Hàm $e$ mũ xác định với tất cả các giá trị nguyên, hữu tỷ, thực và cả giá trị phức của $x$.
Có thể chứng minh ngắn gọn rằng hàm $e$ mũ với $x$ là số nguyên dương $k$ chính là $e^k$ như sau:
Chứng minh này cũng chứng tỏ rằng $e^{x+y}$ thỏa mãn đẳng thức lũy thừa khi $x$ và $y$ là các số nguyên dương. Kết quả này cũng có thể mở rộng cho tất cả các số không phải là số nguyên dương.
-
Hàm luỹ thừa với số mũ thực:
Lũy thừa với số mũ thực cũng thường được định nghĩa bằng cách sử dụng logarit thay cho sử dụng giới hạn của các số hữu tỷ.
Logarit tự nhiên $ln(x)$ là hàm ngược của hàm $e^x$. Theo đó, $lnx$ là số $b$ sao cho $x=e^b$
Nếu $a$ là số thực dương, $x$ là số thực bất kỳ ta có $a=e$ ln a nên nếu $a^x$ được định nghĩa nhờ hàm logarit tự nhiên thì ta cần phải có:
$a^x=(e^{lna})^x=e^{x.lna}$
Điều này dẫn tới định nghĩa: $a^x=e^{x.lna} với mọi số thực $x$ và số thực dương $a$
Đăng ký ngay để được các thầy cô tư vấn và xây dựng lộ trình ôn thi sớm đạt 9+ ngay bây giờ
2. Một số dạng bài tập trong bài giảng luỹ thừa lớp 12 thường gặp
2.1. Dạng 1: Tìm điều kiện cơ số của luỹ thừa
Phương pháp giải:
+ Khi xét lũy thừa với số mũ 0 và số mũ nguyên âm thì cơ số phải khác 0.
+ Khi xét lũy thừa với số mũ không nguyên âm thì cơ số phải dương.
Ta xét ví dụ sau đây:
2.2. Dạng 2: Rút gọn các biểu thức chứa luỹ thừa, căn thức
Để rút gọn các biểu thức đại số chứa luỹ thừa, ta cần linh hoạt sử dụng các hằng đẳng thức đáng nhớ, các tính chất của lũy thừa và tính chất của căn thức.
Ví dụ sau đây sẽ giúp em hiểu rõ hơn về cách làm dạng bài tập này trong bài giảng luỹ thừa lớp 12:
2.3. Dạng 3: So sánh các luỹ thừa
Để so sánh hai lũy thừa ta sử dụng tính chất sau:
+ Tính chất 1
+ Tính chất 2. So sánh lũy thừa khác cơ số:
Với a > b > 0 thì
+ Chú ý:
Các em cùng VUIHOC xét các ví dụ minh hoạ sau đây:
PAS VUIHOC – GIẢI PHÁP ÔN LUYỆN CÁ NHÂN HÓA
Khóa học online ĐẦU TIÊN VÀ DUY NHẤT:
⭐ Xây dựng lộ trình học từ mất gốc đến 27+
⭐ Chọn thầy cô, lớp, môn học theo sở thích
⭐ Tương tác trực tiếp hai chiều cùng thầy cô
⭐ Học đi học lại đến khi nào hiểu bài thì thôi
⭐ Rèn tips tricks giúp tăng tốc thời gian làm đề
⭐ Tặng full bộ tài liệu độc quyền trong quá trình học tập
Đăng ký học thử miễn phí ngay!!
3. Bài tập áp dụng
Để thành thạo các dạng toán đã nêu trong bài giảng luỹ thừa lớp 12 trên, VUIHOC gửi tặng các em bộ bài tập củng cố luỹ thừa siêu đầy đủ và có giải chi tiết. Các em có thể tự luyện tập ở nhà hoặc làm thành bộ đề ôn thi tuỳ theo nhu cầu cá nhân.
Tải xuống bộ bài tập củng cố bài giảng luỹ thừa lớp 12 có giải chi tiết
Trên đây là toàn bộ lý thuyết và các dạng bài tập trong bài giảng luỹ thừa lớp 12. Chúc các em ôn luyện tốt!