Giải phương trình logarit bằng máy tính siêu nhanh
Phương pháp giải phương trình logarit bằng máy tính là chủ đề toán học được các bạn học sinh rất quan tâm vì chúng áp dụng rất nhiều trong các bài tập và đề thi. Tại bài viết này, VUIHOC sẽ cùng các em tổng hợp và chinh phục từng phương pháp giải phương trình logarit bằng máy tính siêu nhanh.
Trước khi đi vào tìm hiểu lý thuyết và làm bài tập giải phương trình logarit bằng máy tính, các em cùng VUIHOC đọc bảng dưới đây để có cái nhìn tổng quan nhất về độ khó và vùng kiến thức cần nắm nhé!
Để tiện hơn trong quá trình ôn tập, VUIHOC gửi tặng em file tổng hợp lý thuyết chung về phương trình logarit và cách giải phương trình logarit bằng máy tính đầy đủ và siêu chi tiết tại link dưới đây. Các em nhớ tải về để ôn tập nhé!
Tải xuống file tổng hợp lý thuyết về phương trình logarit
1. Lý thuyết chung về logarit và phương trình logarit
1.1. Định nghĩa về logarit
Theo kiến thức về lũy thừa - mũ - logarit đã học, logarit của một số là lũy thừa mà một giá trị cố định, gọi là cơ số, phải được nâng lên để tạo ra số đó. Có thể hiểu đơn giản, logarit chính là phép toán nghịch đảo của lũy thừa, hiểu 1 cách đơn giản hơn thì hàm logarit chính là đếm số lần lặp đi lặp lại của phép nhân.
Công thức chung của logarit có dạng như sau:
Logarit có công thức là logab trong đó $b>0, 0<a\neq 1$
Có 3 loại logarit:
-
Logarit thập phân: là logarit có cơ số $10$, viết tắt là $log_{10}b=logb(=lgb)$ có nhiều ứng dụng trong khoa học và kỹ thuật.
-
Logarit tự nhiên: là logarit có cơ số là hằng số $e$, viết tắt là $ln(b), log_e(b)$ có ứng dụng nhiều trong toán học và vật lý, đặc biệt là vi tích phân.
-
Logarit nhị phân: là logarit sử dụng cơ số $2$, ký hiệu là $log_2b$ có ứng dụng trong khoa học máy tính, lập trình ngôn ngữ C
-
Ngoài ra, ta còn 2 cách phân loại khác là logarit phức (là hàm ngược của hàm lũy thừa trong số phức) và logarit rời rạc (ứng dụng trong mật mã hoá khoá công khai)
Về phương trình logarit, với cơ số a dương và khác $1$ thì phương trình có dạng như sau được gọi là phương trình logarit cơ bản: $log_ax=b$
Ta thấy vế trái của phương trình là hàm đơn điệu có miền giá trị là R. Vế phải phương trình là một hàm hằng. Vì vậy phương trình logarit cơ bản luôn có nghiệm duy nhất. Theo định nghĩa của logarit ta dễ dàng suy ra nghiệm đó là $x=a^b$
1.2. Các công thức logarit và phương trình logarit
Một số công thức biến đổi logarit vận dụng để giải phương trình logarit chứa tham số được VUIHOC tổng hợp tại bảng sau đây, các em lưu ý nhé:
Hai quy tắc tính logarit quan trọng dùng để biến đổi phương trình logarit mà các em cần ghi nhớ:
quy tắc logarit của 1 tích:
– Công thức logarit của một tích như sau: $log(ab)=log(a)+log(b)$.
– Điều kiện: $a, b$ đều là số dương với $0<\alpha \neq 1$.
– Đây là logarit hai số a và b thực hiện theo phép nhân thông qua phép cộng logarit ra đời vào thế kỷ 17. Sử dụng bảng logarit, ta sẽ đưa logarit về cơ số $a=10$ là logarit thập phân sẽ dễ dàng tra bảng, tính toán hơn. Logarit tự nhiên với hằng số $e$ là cơ số (khoảng bằng 2,718) được áp dụng thuận tiện trong toán học. Logarit nhị phân có cơ số 2 được dùng trong khoa học máy tính.
– Nếu muốn thu nhỏ phạm vi các đại lượng, bạn dùng thang logarit.
quy tắc logarit của 1 luỹ thừa:
– Ta có công thức logarit như sau: $log_ab=lo_ab$
– Điều kiện với mọi số α và a, b là số dương với $0<\alpha\neq 1$
Đối với các bài tập giải phương trình logarit bằng máy tính, chúng ta cần lưu ý thêm các công thức dưới đây:
2. Các phương pháp giải phương trình logarit bằng máy tính
2.1. Giải phương trình logarit bằng máy tính dạng trắc nghiệm sử dụng CALC
Bước 1: Chuyển phương trình về 1 vế > Nhập phương trình vào trong máy tính.
Bước 2: Bấm CALC thử lần lượt các đáp án A, B, C, D vào phương trình > Bấm “=” > Nếu kết quả bằng 0 thì đáp án đó là đáp án đúng.
Ta cùng xét ví dụ giải phương trình logarit bằng máy tính như sau để hiểu hơn về cách giải này:
Ví dụ: Phương trình Log2X Log4X Log6X = Log2X Log4X + Log4X Log6X + Log6X Log2X có tập nghiệm là:
A. {1}
B. {2,4,6}
C. {1,12}
D. {1,48}
Giải:
Phương trình mới có dạng: Log2X Log4X Log6X - (Log2X Log4X + Log4X Log6X + Log6X Log2X) = 0. Nhập vào máy tính vế trái của phương trình.
Tại X = 1, ta bấm “CALC + 1 + =” > Phương trình = 0.
Vậy X = 1 là nghiệm của phương trình, chúng ta loại được đáp án B.
Thử X = 1
Tại X = 12, ta bấm “CALC + 12 + =” > Phương trình ra đáp án khác 0.
Vậy X = 12 không là nghiệm của phương trình. Loại đáp án C.
Thử X = 12
Tại X = 48, ta bấm “CALC + 12 + =” > Phương trình = 0.
Vậy X = 48 là nghiệm của phương trình.
Suy ra, đáp án D là đáp án đúng.
2.2. Giải phương trình logarit bằng tính năng SOLVE
Tính năng SOLVE trên máy tính cầm tay là tính năng cho phép giải nhanh để tìm nghiệm X bất kỳ, phù hợp với một số bài toán trắc nghiệm, cần giải nhanh. Tuy nhiên các em cần lưu ý rằng, tính năng này không làm tròn được một số giá trị phức tạp, cũng như không rà được toàn bộ nghiệm phương trình.
Bước 1: Chuyển phương trình về 1 vế và nhập trực tiếp phương trình vào máy tính cầm tay.
Bước 2: Ấn SHIFT + CALC.
Ví dụ: Cho các số thực dương a, b thỏa mãn Log9(x) = Log16(a+12Log9x). Tính x.
Giải
Nhập phương trình Log9(x) - Log16(a+12Log9x) = 0 vào máy tính như hình dưới.
Bấm SHIFT + CALC.
Lưu ý: Khi máy tính hiện Solve for X? bạn có thể nhập giá trị X bất kỳ.
Tại đây máy sẽ cho ra một kết quả khá lẻ là 39.4622117. Tới bước này, đối với bài toán trắc nghiệm, bạn có thể so với từng đáp án đã cho để tìm ra đáp án đúng nhé.
2.3. Giải phương trình logarit bằng máy tính với tính năng TABLE
Ví dụ: Tính tích các nghiệm của phương trình sau: Log3(3X) Log3(9X) = 4.
Bước 1: Bấm MODE > 7 > Nhập hàm số: f(x) = Log3(3X) Log3(9X) – 4.
Bước 2: Nhấn “=” > Chọn START = 0 > “=” > Chọn END = 29 > “=” > Chọn STEP = 1 > “=”.
Bước 3: Dò cột f(x) để tìm những khoảng hàm số đổi dấu. Ví dụ như hình dưới đây ta thấy khoảng (0;1) và (1;2) hàm số đổi dấu từ âm sang dương. Vậy trên khoảng này sẽ có khả năng có nghiệm, ta sẽ xét tiếp 2 khoảng này.
Dò khoảng nghiệm của phương trình
Bước 4: Bấm AC và dấu = để làm lại các bước trên. Với khoảng (0;1) ta chọn START = 0 > END = 1 > STEP 1/29. Ta được khoảng (0;0,0344) có thể có nghiệm, ta sẽ dò tiếp khoảng này để tìm nghiệm gần đúng nhất.
Dò tiếp khoảng nghiệm nhỏ hơn
Bước 5: Với khoảng (0;0,0344) ta chọn START = 0 > END = 1 > STEP = 0,0344/29. Ta được nghiệm nằm trong khoảng (0,0189-0,0201).
Ra khoảng nghiệm gần đúng thứ 2
Bước 6: Muốn có nghiệm chính xác hơn nữa ta lặp lại với START = 0,0189 > END = 0,0201 > STEP = (0,0201-0,0189)/29. Ta được nghiệm đúng thứ nhất là 0,01997586207.
Tìm ra nghiệm thứ nhất của bài toán
Bước 7: Làm tương tự với khoảng (1;2). Ta được nghiệm đúng thứ hai là 1,852482759.
Tìm ra nghiệm thứ hai của bài toán
Bước 8: Bấm tích hai nghiệm với nhau ta thu được kết quả của bài toán.
3. Bài tập áp dụng giải phương trình logarit bằng máy tính
Để giúp các em giải phương trình logarit bằng máy tính nhanh và chính xác trong các bài tập và đề thi, VUIHOC gửi tặng các em file tổng hợp bộ bài tập luyện giải phương trình logarit bằng máy tính siêu đầy đủ các dạng và có giải chi tiết. Các em đừng quên tải theo link dưới đây nhé!
Tải xuống file tổng hợp bài tập giải phương trình logarit bằng máy tính có giải chi tiết
Đặc biệt hơn, thầy Thành Đức Trung đã có bài giảng cực hay về cách giải phương trình logarit bằng máy tính với siêu nhiều mẹo bấm máy. Các em đừng bỏ qua video livestream bài giảng của thầy để học thêm nhiều chiêu thức hay ho hơn nhé!
Trên đây là toàn bộ kiến thức và các kỹ năng cần thiết để giải phương trình logarit bằng máy tính nhanh gọn nhất. Chúc các em ôn tập thật tốt!