img
Thông báo
Sắp bắt đầu năm học mới, lớp hiện tại của bạn đang là lớp {{gradeId}}, bạn có muốn thay đổi lớp không?
img

Toán 10 Bài 5: Số Gần Đúng Sai Số - Lý Thuyết Và Bài Tập

Tác giả Cô Hiền Trần 10:48 06/12/2023 74,374 Tag Lớp 10

Số gần đúng sai số được Vuihoc tổng hợp toàn bộ lý thuyết và các dang bài tập có lời giải đi kèm nhằm giúp các bạn học sinh hiểu rõ bài toán số gần đúng sai số một cách chính xác nhất. Qua bài viết, Vuihoc cũng mong muốn học sinh rèn luyện thêm kiến thức để áp dụng vào bài học.

Toán 10 Bài 5: Số Gần Đúng Sai Số - Lý Thuyết Và Bài Tập
Mục lục bài viết
{{ section?.element?.title }}
{{ item?.title }}
Mục lục bài viết x
{{section?.element?.title}}
{{item?.title}}

1. Số gần đúng

Số gần đúng và sai số được biểu diễn trong toán học như thế nào? Hãy cùng tìm hiểu về lý thuyết số gần đúng sai số ngay sau đây.

Số $\bar{a}$ biểu diễn được giá trị thực của một đại lượng được gọi là số đúng. Số a có giá trị ít nhiều với số đúng $\bar{a}$ gọi là số gần đúng của số $\bar{a}$.

Định nghĩa số gần đúng sai số

 

2. Sai số tuyệt đối một số gần đúng

Độ lệch giữa giá trị đo lường và giá trị thực được gọi là sai số tuyệt đối. Đây chính là cách để xét độ chính xác của các giá trị khi đo.

Ta có a là số gần đúng của số $\bar{a}$.

Ta gọi $\Delta _{a}=|\bar{a}-a|$ là sai số tuyệt đối của số gần đúng a.

 

3. Độ chính xác một số gần đúng

Nếu ta có  $\Delta _{a}=|\bar{a}-a|\leq d$ thì (-d) ≤ $\bar{a}-a$ ≤ d hay (-d) + a ≤ $\bar{a}$ ≤ d + a.

Ta sẽ nói a chính là số gần đúng của $\bar{a}$ với độ chính xác d, viết gọn lại là:

$\bar{a}=a\pm d$

Nếu biết số gần đúng a và độ chính xác d, ta suy ra số gần đúng nằm trong đoạn [a - d, a + d].

Đăng ký ngay để được các thầy cô ôn tập và xây dựng lộ trình ôn thi THPT môn Toán vững vàng

4. Chữ số đáng tin

Có a là số gần đúng của số $\bar{a}$.

Theo như cách ghi thập phân của a, nếu sai số tuyệt đối Δa không vượt quá một đơn vị của hàng chữ số k thì ta nói chữ số k của a là chữ số đáng tin (hay còn gọi là chữ số chắc). Ví dụ: a = 18,3651.

Δa = 0,02

Ta có các chữ số đáng tin là 1, 8, 3 còn các số 6, 5, 1 không đáng tin.

Chú ý: chữ số k là đáng tin thì tất cả các chữ số đứng bên trái k đều là chữ số đáng tin.

 

5. Quy tròn số gần đúng với độ chính xác đã được cho

Việc quy tròn số gần đúng với độ chính xác ví dụ là khi cho số gần đúng a = 1262623 với độ chính xác d = 200. Các bạn hãy viết số quy tròn của số a?

Lúc này chúng ta làm theo các bước: vì độ chính xác d = 200 nên ta quy tròn số a đến hàng nghìn theo quy tắc làm tròn bên trên. Vậy số quy tròn lúc này sẽ là 1263000.

 

6. Một số bài tập về số gần đúng sai số từ cơ bản đến nâng cao

Bài 5 số gần đúng sai số có rất nhiều các dạng bài tập khác nhau. Các em học sinh hãy theo dõi những ví dụ dưới đây để luyện tập.

6.1. Bài tập tự luận

Bài 1: Hình vuông có cạnh 3cm. Hãy tính đường chéo của hình vuông và xác định độ chính xác. Biết $\sqrt{2}$=1,4142135

Giải:

Đồ dài đường chéo hình vuông là $3\sqrt{2}$= 3.1,414 = 4,242

$|3\sqrt{2}-4.242|<|3.1,415-4,242|=4,245-4,242=0,03$

Vậy độ dài đường chéo có độ chính xác là d = 0,03.

Bài 2: Viết số gần đúng $\sqrt[3]{5}$ theo quy tắc làm tròn với ba chữ số thập phân, ước lượng sai số tuyệt đối. Biết $\sqrt[3]{5}$=1,709975947.....

Giải:

Làm tròn ba chữ số thập phân: $\sqrt[3]{5}$ = 1,71

=> Sai số tuyệt đối: |1,71-1,70|=0,01

Bài 3: Viết số quy tròn của số gần đúng 1745,25. Biết chiều dài một cây cầu đo được là l = 1745,25m $\pm $ 0,01m

Giải:

Ta có: l = 1745,25m $\pm $ 0,01m

=> Độ chính xác số đo là 0,01 m.

Chữ số 5 ở hàng phần trăm nên không đáng tin => ta bỏ theo quy tắc làm tròn.

1745,3m là số quy tròn của 1745,25m

Bài 4: Biết số đúng là 3,254. Hãy tìm sai số tuyệt đối khi quy tròn số đến hàng phần trăm

Giải:

Số quy tròn đến hàng phần trăm chính là 3,25.

Sai số tuyệt đối: ∆ = |3,254 - 3,25| = 0,004

Bài 5: Ta có một thửa ruộng hình chữ nhật có chiều rộng x = 43m ± 0,5m và chiều dài y = 63m ± 0,5m. Hãy chứng minh chu vi của miếng đất là P = 212m ± 2m.

Giải:

x = 43 + u, y = 63 + v.

Ta có chu vi P = 2x + 2y = 2(43+63) + 2u + 2v = 212 + 2(u + v).

-0,5 ≤ u ≤ 0,5 và -0,5 ≤ v ≤ 0,5 nên -2 ≤ 2(u + v) ≤ 2.

P = 212m ± 2m.

6.2. Bài tập trắc nghiệm 

Bài 1: Hãy viết số quy tròn của số​​ a khi cho một số gần đúng​​ a = 23748023 có độ chính xác​​ d = 101. 

A.​​ 23749000

B.​​ 23748000

C.​​ 23746000

D.​​ 23747000

Giải:

Độ chính xác​​ d = 101 ở hàng trăm nên ta làm tròn​​ a = 23748023 đến hàng nghìn, được kết quả là​​ a = 23748000.

=> B

Bài 2: Số quy tròn của số​​ a là bao nhiêu biết giá trị gần đúng của số​​ $\pi $​​ là​​ a = 3,141592653589 với độ chính xác​​ là 10 - 10.

A.​​ a = 3,141592654.

B.​​ a = 3,1415926536. 

C.​​ a = 3,141592653.

D.​​ a = 3,1415926535

Giải:

Độ chính xác​​ d = 10 - 10, suy ra ta làm tròn số​​ a = 3,141592653589​​ chính xác đến hàng của​​ d.10 = 10 - 9​​ (9 chữ số thập phân).

=> a = 3,141592654000.

Chọn đáp án A.

Bài 3: Hãy viết số quy tròn số gần đúng​​ a = 17658​​ biết​​ a- = 17658  ±  16.

A.​​ 17700.

B.​​ 17800. 

C.​​ 17500. 

D.​​ 17600.

Giải:

Ta có: a- = 17658 ± 16 → d = 16 (hàng chục) → làm tròn số​​ a = 17658​​ đến hàng trăm.

Vậy ta có đáp án 17700 => Chọn A.

Bài 4: Số quy tròn của số gần đúng 347,13 là bao nhiêu? Biết độ cao của ngọn cây h = 347,13m ± 0,2m.​​ 

A.​​ 345. 

B.​​ 347. 

C.​​ 348. 

D.​​ 346.

Giải:

Độ cao h = 347,13m ± 0,2m => d = 0,2 làm tròn h = 347,13 đến hàng​​ d.10 = 2​​ (hàng đơn vị).

Vậy ta có kết quả là 347.​​

=> B.

Bài 5: Hãy tính chu​​ vi​​​ của ruộng biết mảnh ruộng hình chữ nhật có chiều dài​​ y = 63m ± 0,5m và chiều rộng​​ x = 43m ± 0,5m​​. 

A.​​ P = 212m ± 4m. 

B.​​ P = 212m ± 2m.

C.​​ P = 212m ± 0,5m. 

D.​​ P = 212m ± 1m.

Giải:

Ta có chu vi P miếng đất là:​​ 

P = 2x + y = 2.43 ± 0,5 + 63 ± 0,5 = 2.43 + 63 ± 0,5 + 0,5 = 212 ± 2.​

=>​ B.

Bài 6: Cho tam giác​​ ABC​​ có độ dài ba cạnh là a = 12cm ± 0,2cm,​​ b = 10,2 cm ± 0,2cm,​ c = 8cm ± 0,1cm.​​ Hãy tính chu vi​​​ tam giác.

A.​​ P = 30,2cm ± 0,2cm. 

B.​​ P = 30,2cm ± 0,5cm. 

C.​​ P = 30,2cm ± 2cm.

D.​​ P = 30,2cm ± 1cm.

Giải: 

Chu vi P của tam giác là P = a + b + c

= 12 + 10,2 + 8 ± 0,2 + 0,2 + 0,1 = 30,2 ± 0,5.

​​ P = 30,2cm ± 0,5cm

Chọn đáp án B

Bài 7: Diện tích​​ S​​ của mảnh đất đã cho là bao nhiêu? Biết mảnh đất hình chữ nhật có chiều dài x = 23m ± 0,01m​​ và chiều rộng y = 15m ± 0,01m. 

A.​​ S = 345m ± 0,001m. 

B.​​ S = 345m ± 0,38m.

C.​​ S = 345m ± 0,01m. 

D.​​ S = 345m ± 0,3801m.

Giải:

Ta có diện tích của thửa ruộng hình chữ nhật là​​ S = xy = 23 ± 0,01.15 ± 0,01

= 23.15 ± 23.0,01 + 15.0,01 + 0,012

= 345 ± 0,3801.

​Chọn đáp án D.

Bài 8: Tìm sai số tuyệt đối của 0,47 biết giá trị gần đúng của $\frac{8}{17}$ là 0.47. 

A. 0.001

B. 0,002

C. 0,004

D. 0,005

Giải:

Có $\frac{8}{17}$=0,470588235294... vậy sai số tuyệt đối của 0,47 được tính là:

=|0,47-$\frac{8}{17}$|<0,47-4,471=0,001

Đáp án A

Bài 9: 0,429 là giá trị gần đúng của $\frac{3}{7}$. Tìm sai số tuyệt đối của 0,429.

A. 0.0001

B. 0.0005

C. 0.0002

D. 0.0004

Giải:

Có $\frac{3}{7}$=0,428571... Vậy sai số tuyệt đối của 0,429 là:

$\Delta =|0,429-\frac{3}{7}|<|0,429-0,4285|=0,0005$

Đáp án B

Bài 10: Lấy giá trị gần đúng của số là 3,14 thì có sai số là?

A. 0.001

B. 0.003

C. 0.002

D. 0.004

Giải:

Ta có số $\pi -3,141592654...$

Sai số tuyệt đối của 3,14 là:

$\Delta =|3,14-\pi |<|3,14-3,141|=0,001$

Đáp án A

PAS VUIHOCGIẢI PHÁP ÔN LUYỆN CÁ NHÂN HÓA

Khóa học online ĐẦU TIÊN VÀ DUY NHẤT:  

⭐ Xây dựng lộ trình học từ mất gốc đến 27+  

⭐ Chọn thầy cô, lớp, môn học theo sở thích  

⭐ Tương tác trực tiếp hai chiều cùng thầy cô  

⭐ Học đi học lại đến khi nào hiểu bài thì thôi

⭐ Rèn tips tricks giúp tăng tốc thời gian làm đề

⭐ Tặng full bộ tài liệu độc quyền trong quá trình học tập

Đăng ký học thử miễn phí ngay!!

Bài viết trên đây tổng hợp đầy đủ lý thuyết và các dạng số gần đúng, sai số. Mong rằng khi đọc bài viết này, các bạn học sinh có thể giải được các bài tập từ cơ bản đến nâng cao.Để ôn tập và củng cố thêm nhiều kiến thức lớp 12 và ôn thi THPT Quốc gia, hãy truy cập nền tảng học online Vuihoc.vnđăng ký khóa học để học và ôn tập nhiều hơn về các kiến thức toán nhé!

Banner afterpost lớp 10
| đánh giá
Bình luận
  • {{comment.create_date | formatDate}}
Hotline: 0987810990