Số phức liên hợp là gì? Tính chất và cách tìm chi tiết nhất
Số phức liên hợp là dạng bài khó trong chương trình toán THPT. Đây đồng thời cũng là một dạng quan trọng thuộc chuyên đề lớn của toán học 12. Để biết được cách giải, trước hết các em cần nắm vững tính chất và định nghĩa của nó. Hãy cùng tham khảo tính chất và phương pháp giải các bài toán liên quan đến số phức liên hợp qua bài viết sau đây của VUIHOC.
1. Số phức liên hợp là gì?
Ta có số phức được viết dưới dạng như sau: Z= a + bi, khi đó, số phức $\bar{Z} = a - bi$ được gọi là số phức liên hợp của Z.
2. Tính chất của số phức liên hợp
Một số tính chất cơ bản của số phức liên hợp cần phải nhớ:
-
$Z \times \bar{Z}$ = a2+ b2 là một số thực
-
$Z + \bar{Z} = 2a$ là một số thực
-
$\overline{Z + Z'} = \bar{Z} + \bar{Z'}$
-
$\overline{Z \times Z'} = \bar{Z} \times \bar{Z'}$
-
3. Cách tìm số phức liên hợp chi tiết nhất
Cho số phức z = a + bi. Ta gọi số phức liên hợp của z là a - bi.
Kết quả: ∀ z ∈ C ta có:
-
$\bar{Z} = Z ; \left | \bar{Z} \right | = \left | Z \right |$
-
$\overline{Z _{1} . Z_{2}} = \left | \bar{Z_{1}} \right | . \left | \bar{Z_{2}} \right |$
-
$\overline{Z _{1} \pm Z_{2}} = \left | \bar{Z_{1}} \right | \pm \left | \bar{Z_{2}} \right |$
-
$(\overline{\frac{{Z}_{1}} {Z2}}) = \frac{\overline{{Z}_{1}}}{\overline{{Z}_{2}}}$
Trong đó:
-
$Z$ là số thực khi $Z = \bar{Z}$
-
$Z$ là số thuần ảo khi $Z = -\bar{Z}$
Tham khảo ngay tài liệu ôn tập trọn bộ kiến thức và phương pháp giải mọi dạng bài tập Toán trong kỳ thi THPT Quốc Gia
4. Cách bấm số phức liên hợp trên máy tính casio
Phép tính cộng, trừ, nhân, chia và tính modun của số phức liên hợp
-
Chọn chế độ Deg rồi nhấn Mode2 để hiển thị chế độ số phức.
-
Lúc này, màn hình máy tính sẽ xuất hiện chữ “i” và hiển thị nút ENG. Khi đó các em thực hiện tính toán các phép tính như thông thường.
-
Trong trường hợp muốn tính Modun của số phức thì ấn shift + hyp. Màn hình sẽ xuất hiện dấu trị tuyệt đối thì nhập biểu thức và tính như bình thường.
Ví dụ:
Tìm căn bậc hai của số phức liên hợp
Cách 1:
Để máy tính ở chế độ Deg và chuyển sang mode 1 rồi ấn Shift +. Tiếp tục nhập Pol và ấn “=”.
Ấn Shift – xuất hiện rồi chọn Rec (x, y:2) và sau đó ấn “=”. Khi đó các em sẽ có được phần thực và phần ảo của số phức cần tìm.
Ví dụ:
Cách 2:
Lấy cả kết quả rồi bình phương nó lên để xem số nào sẽ trùng với dữ liệu đề bài. Với cách này các em chỉ nên dùng khi muốn kiểm tra lại kết quả sau khi đã tìm ra đáp án.
5. Một số bài tập tìm số phức liên hợp và phương pháp giải
Câu 1: Cho số phức Z= 1+3i. Tìm số phức $\bar{Z}$
Giải:
Ta có: Z= 1+3i $\Rightarrow \bar{Z} = 1 - 3i$
Câu 2: Cho số phức z= -2-5i. Tìm số thực a và phần ảo b của số phức Z
Giải:
Ta có Z= a+ bi $\Rightarrow \bar{Z} = a - bi$
Nên $\bar{Z}$ = -2+ 5i
Vậy phần thực a= -2, phần ảo b= 5
Câu 3: Tìm số phức liên hợp của số phức $Z = \frac{1 + i}{2 - i}$
Giải:
Ta có: $Z = \frac{1 + i}{2 - i} = \frac{(1 + i)(2 + i)}{(2 - i)(2 + i)} = \frac{1 + 3i}{2^{2} - i^{2}} = \frac{1}{5} + \frac{3}{5}i$
$\Rightarrow \left | \bar{Z} \right | = \frac{1}{5} + \frac{3}{5}i$
Câu 4: Cho số phức z = 3 + 4i. Tìm phần thực a và phần ảo b của số phức $\bar{Z}$
Giải:
Ta có:
Z= a+ bi $\Rightarrow \bar{Z} = a - bi$
$\Rightarrow \bar{Z} = 3 - 4i$
Vậy phần thực a=3 và phần ảo b=-4
Câu 5: Tìm số phức liên hợp của số phức Z= (1+i)(3-2i)+ $\frac{1}{2 + i}$
Giải:
Ta có:
Z= (1+i)(3-2i)+ $\frac{1}{2 + i}$ = (3-2i+ 3i+2) + $\frac{2 - i}{(2 + i)(2 - i)}$ = 5+i+ $\frac{2 - i}{5}$ = $\frac{27 + 4i}{5}$
$\Rightarrow \bar{Z} = \frac{27}{5} - \frac{4}{5}i$
Câu 6: Tìm số phức Z thỏa mãn z-(2+3i), $\bar{Z}$ = 1-9i
Giải
Gọi Z= a+ bi
Ta có: z-(2+3i), $\bar{Z}$ = 1-9i
$\Leftrightarrow $ a+ bi- 2a+ 2bi- 3ai- 3b= i- 9i
$\Leftrightarrow $ -a- 3b= 1 hoặc -3a+ 3b= -9
$\Leftrightarrow $ a= 2 hoặc b= -1
Câu 7: Tìm phần ảo của số phức z thỏa mãn z+2, $\bar{Z}$ = (2-i)2(1-i)
Giải:
Đặt Z= x + yi ta có:
Z+ 2$\bar{Z}$ = (2-i)3(1-i)
$\Leftrightarrow$ x+ yi + 2(x-yi)= -9- 13i
$\Leftrightarrow$ 3x= -9 hoặc -y= -13
$\Leftrightarrow$ x= -3 hoặc y= 13
Để hiểu hơn về lý thuyết chung của số phức áp dụng giải các bài tập số phức liên hợp, VUIHOC cùng các em theo dõi bài giảng dưới đây của thầy Thành Đức Trung nhé!
Tham khảo thêm:
⭐Bộ Sách Thần Tốc Luyện Đề Toán - Lý - Hóa THPT Có Giải Chi Tiết
Trên đây là toàn bộ tính chất và cách tìm chi tiết nhất của số phức liên hợp. Tuy nhiên nếu em muốn đạt kết quả cao thì hãy kết hợp luyện tập thêm nhiều dạng bài khác nữa. Em có thể truy cập Vuihoc.vn và đăng ký tài khoản để luyện đề! Chúc các em đạt kết quả cao trong kỳ thi THPT Quốc Gia sắp tới.
PAS VUIHOC – GIẢI PHÁP ÔN LUYỆN CÁ NHÂN HÓA
Khóa học online ĐẦU TIÊN VÀ DUY NHẤT:
⭐ Xây dựng lộ trình học từ mất gốc đến 27+
⭐ Chọn thầy cô, lớp, môn học theo sở thích
⭐ Tương tác trực tiếp hai chiều cùng thầy cô
⭐ Học đi học lại đến khi nào hiểu bài thì thôi
⭐ Rèn tips tricks giúp tăng tốc thời gian làm đề
⭐ Tặng full bộ tài liệu độc quyền trong quá trình học tập
Đăng ký học thử miễn phí ngay!!
>> Tham khảo thêm bài viết: